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Proof of the existence and uniqueness of a solution for the Haissinski equation
with a capacitive wake function
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The existence and uniqueness of a solution for the Haissinski equation with a capacitive wake function has
been analytically proved.
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The existence and uniqueness of a solution for
Haissinski equation is an interesting and important quest
because the solution of this equation is the basis of the th
of longitudinal instabilities. The stability condition of a
electron beam is studied by adding a small perturbation
this solution and finding the imaginary part of the frequen
of modes of the electron beam@1–3#. It is known that the
instability thresholds obtained with this method are in go
agreement with the particle-tracking results@2,3#. Nonethe-
less, the properties of the solution of the Haissinski equa
has not been studied sufficiently and analytically. This
because it is such a complicated nonlinear equation.

This means that there is possibility that this equation
either no solutions or many solutions. Indeed, it has b
considered that a solution cannot exist for the inductive w
case beyond the threshold. Recently, it has been numeri
proved that there is a solution for this case@4,5#. There
seems to have always been a solution for arbitrary w
functions in previous numerical studies. It is desirable
show the existence and uniqueness of the solution for
Haissinski equation analytically; however, there is no co
plete successful analytical approach to prove them, ex
for a simple resistive wake case@6#. Here, we present a proo
of the existence and uniqueness of a solution for a capac
wake function.

Haissinski formulated a theory for bunch lengthening b
fore mode-coupling instabilities occur@1#. Electrons in an
accelerator interact with their environment because they
enclosed in metals~vacuum pipe, the rf cavities, etc.!. This
effect is represented by the wake function@6#. The wake field
acting on an electron is determined by the distribution
electrons ahead of it. At the same time, the distribution
electrons is influenced by the wake field. Hence, to de
mine the distribution function, one should solve coupl
nonlinear equations. The single-particle equations of mo
are as follows:

d

ds
j52

vs

cse
e, ~1!
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Here, we have used the dimensionless parameterj as

j[
vs

ase
t, ~3!

wherese is the nominal rms relative energy spread,c is the
velocity of light, e is the electric charge of the electron,L is
the total length of the pipe structure in which the wake fie
is generated,E0 is the reference energy of the beam,N is the
number of electrons in a bunch,T0 is the revolution period of
the beam,t is the time displacement between an electron a
the reference synchronous particle,e is the relative energy
(E2E0)/E0 with E being the electron energy,vs is the syn-
chrotron oscillation frequency,a is the momentum compac
tion factor, ands is the longitudinal coordinate along th
ring. The second term of Eq.~2! is the retarding force see
by a particle atj due to the longitudinal wake force that
produced by all particles in front of it;r~j! is the particle
density at locationj.

In the presence of radiation, two more parameters are n
essary:b, which is the damping coefficient andD5bse

2,
which is the diffusion coefficient representing the amount
quantum excitation due to photon emission. The dynam
with radiation may be described by the Fokker-Planck eq
tion for the phase-space particle distributionf(e,j,s) @7#,
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]e2 c. ~4!

This equation has a static solution implicitly given by

c~e,j!5expS 2
e2

2se
2D r~j!, ~5!

r~j!5A expS 2
j2

2
1E

j

`

dj8V~j8! D , ~6!

V~j!5E
j

`

dj8r~j8!w~j82j!, ~7!

w~j82j!52
e2LN

vsseT0E0
W~j82j!. ~8!-
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Equation~6! is the Haissinski equation@1#. Here, A is the
normalization constant:*rdj51. Sincer~j! depends only
on r(j8) for j,j8, and we know

r~j!;A expS 2
j2

2 D , j→`, ~9!

Eq. ~6! can be integrated from the head of the bunch to
tail for a given value ofA. Let us call the result of such a
integrationr(j;A) and define the ‘‘charge’’Q as

Q5Q~A!5E
2`

`

r~j;A!dj. ~10!

If a valueA exists such thatQ(A)51, it gives the solution of
the Haissinski equation@2,3#.

We usually find the solution of Eq.~6! numerically, be-
cause the wake force of vacuum chamber elements is
complicated. The wake function can often be parametri
by a sum of inductive, resistive, and capacitive wake fu
tions@1,6,8#. Machines with deep cavities are slightly capa
tive for a normal bunch, and become more capacitive
short bunches@9#, i.e.,

w~j!52C0 . ~11!

Here, we should notice that the sign ofC0 may be positive or
negative, because the sign ofC0 depends on that of the mo
mentum compaction factor.

Here, we analytically prove the existence and uniquen
of a solution of Eq.~6! with Eqs.~7! and ~11!. For the pur-
pose of our proof, we show that ‘‘charge’’Q(A) is a mono-
tonically increasing function ofA, i.e.,

Q~0!50, ~12!

dQ~A!

dA
.0, ~13!

there exists anA0 such that lim
A→A0

Q~A!5`. ~14!

Equations ~12!, ~13!, and ~14! assure the existence an
uniqueness of the solution, because this causes the exis
and uniqueness ofA, which satisfiesQ(A)51. We mainly
show Eqs.~13! and ~14!, because Eq.~12! is trivial.

Before our proof, it is necessary to know the relations t
the solution of the Haissinski equation must satisfy. Equat
~6! with Eqs.~7! and ~11! is rewritten as

r8

r
52j1C0E

j

`

dj8r~j8!, ~15!

where the prime denotes differentiation with respect toj.
This may be solved as

r8

r
56A2~2 logr2C0r1D0!, ~16!
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whereD0 is a constant of integration. By comparing Eq.~16!
with Eq. ~9!, D0 should be logA. Further, since Eq.~9!
means thatr must be decreasing for a sufficiently largej, we
have to choose the2 branch in Eq.~16! for j→`.

If r8 is always negative, there is no physicalr, which
means thatQ(A) is ill defined. We have to find the region o
j wherer8 can be positive. According to Eq.~15!, if there
existsj0 , such that

2j01C0E
j0

`

dj8r~j8!50, ~17!

r8 can become positive forj<j0 . According to Eq.~16!,
this means that if there existsr(j0), such that

2 logr~j0!2C0r~j0!1 logA50, ~18!

we may choose the1 branch in Eq.~16! for j<j0 . Follow-
ing this manipulation, we may find a continuous solution.

Next, we should confirm whether the sign ofr8 really
changes or not by using the original differential equation
C0 is positive, the right-hand side of Eq.~15! is monotoni-
cally increasing asj becomes smaller. Thus, the sign ofr8
becomes positive forj<j0 . On the other hand, ifC0 is
negative, there occurs a change of the sign only forr(j)
<1/uC0u. Otherwise, there is no ‘‘well-defined’’r, even ifj0
exists. This condition forr may be rewritten to that forA by
using Eq. ~18!. That is, A is arbitrary for a positiveC0 ,
while 0<A,1/(uC0ue) for a negative C0 , where e
52.7182, . . . . From the above discussions, we may al
find that there is only onej0 , which means thatr has only
one relative maximum. Further,r cannot be larger than
1/uC0u whenC0 is negative.

Thus,r must satisfy

E
r~j` ,A!

r~j,A! dr

rA2~2 logr2C0r1 logA!
52~j2j`!

for j>j0 ,

E
r~j` ,A!

r~j,A! dr

rA2~2 logr2C0r1 logA!
5j22j0~A!1j`

for j<j0 , ~19!

where we use Eq.~16!. The parameterj` is an artificial point
that goes to infinity asr(j` ,A) goes to 0.

Before we proceed further, we should know the conditi
that the chargeQ(A) is well defined. According to Eqs.~10!
and ~19!, Q(A) is given as

Q~A!5E
0

r~j0 ,A!

drA 2

2 logr2C0r1 logA
, ~20!

where we change the variablej to r. Here, we should notice
that the integrand is divergent atr5r(j0), becauser(j0) is
given by Eq. ~18!. It is necessary to investigate wheth
Q(A) converges or not.

Let us divide the integral region into the following form
1-2
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Q5F E
0

r~j0!2e
1E

r~j0!2e

r~j0! GdrA 2

2 logr2C0r1 logA
, ~21!

where 0,e,r(j0). The first term is obviously convergent. The second term, which we callQ2 , is given by

Q25E
0

e

dxA 2

2 logFr~j0!S 12
x

r~j0! D G2C0@r~j0!2x#1 logA

, ~22!
-

he
-

l

f

where x5r(j0)2r. Since log(12x/r0) may be expanded
into a Taylor series for 0,x/r0,1, the following inequality
may be obtained:

Q25E
0

e

dxA 2

x

r~j0!
1(n52

` S x

r~j0!
D n 1

n
1C0x

,E
0

e

dxA 2

S 1

r~j0!
1C0D x

5
2&

AS 1

r~j0!
1C0D

Ae, ~23!

where we use Eq.~18!. According to Eq.~23!, lime→0 Q2

,0 for 1/r(j0)1C0.0. If C0 is positive, this condition
does not cause any constraint. Even ifC0 is negative, this
does not have any constraint becauser,1/uC0u for this case,
as we mentioned previously. SinceQ2 has an upper bound,Q
must converge.

Let us show Eq.~13!, which meansQ(A) is monotoni-
cally increasing asA becomes larger. By taking the deriva
tive of both sides of Eq.~20!,

1

&

dQ

dA
5

1

A2 logr~j0!2C0r~j0!1 logA

1E
0

r~j0!

dr
]

]A

1

A2 logr2C0r1 logA
. ~24!

We have to regularize the first term by puttingr(j0)2e
instead ofr(j0), because this is divergent. By replacing t
derivative ofA with that of r, the second term of the right
hand side is rewritten as
06750
E
0

r~j0!

dr
]

]A

1

A2 logr2C0r1 logA

5E
0

r~j0!

dr
1

2
1

r
2C0

1

A

]

]r

1

A2 logr2C0r1 logA
.

~25!

After we perform partial integration, we obtain

dQ

dA
5E

0

r~j0!

dr
&

A

1

~11C0r!2

1

A2 logr2C0r1 logA
,

~26!

where we use]r(j0)/]A521/(A@21/r(j0)2C0#). Since
Eq. ~26! is positive definite,Q(A) is a monotonically in-
creasing function.

Finally, we show that'A,Q(A).1. With accuracy,Q
→` as A→` for C0>0 and Q→` as A→1/(uC0ue) for
C0,0. First, we consider the case thatC0 is positive. If we
consider the region whereA is sufficiently large, the integra
region inQ(A) may be divided in the following way:

Q~A!5F E
0

1

1E
1

r~j0!GdrA 2

2 logr2C0r1 logA
,

~27!

becauser(j0) increases monotonically asA becomes larger
from Eq. ~18!. The first term obviously goes to 0 asA→`.
For the second term,

E
1

r~j0!

drA 2

2 logr2C0r1 logA

.E
1

r~j0!

drA 2

2C0r1 logA
, ~28!

where we use the fact that logr.0 whenr.1. The right-
hand side goes to 2&AlogA/C0 as A→`. Since the lower
bound ofQ(A) goes to infinity,Q(A) must go to infinity. For
the caseC0,0, the variableA has an upper bound o
1/(uC0ue), which corresponds tor(j0)51/uC0u. The charge
Q(1/(uC0ue)) is given by
1-3
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QS 1

~ uC0ue! D5E
0

1/uC0u
drA 2

2 loguC0ur1uC0ur21
.

~29!

Following the methods used before, we find that Eq.~29! is
infinite.

We have shown thatQ(A) increases monotonically an
that Q(A)→` as A→` for C0>0, Q(A)→` as A
→1/(uC0ue) for C0,0. Thus, it is proven analytically tha
the Haissinski equation with a capacitive wake function ha
unique solution. Further, it has been proven analytically t
the solution has only one relative maximum, and that it a
has an upper bound,r,1/uC0u, for the C0,0 case. Al-
though this wake function is a very special one, this work
meaningful in that we have shown how to prove the ex
tence and uniqueness of the solution in an analytical man
We analytically knew that the Haissinski equation had
unique solution for a resistive case because we obtained
solution explicitly. Here, we have found one example who
h
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solution cannot be obtained explicitly, but by which we c
analytically prove its solution’s existence and uniquene
This case causes us to hope that we will sometime prove
existence and uniqueness analytically only if we know
relation that the solution must satisfy.

It is of great interest to see whether the Haissinski eq
tion has at least one solution for any physical wake functi
Although it seems true empirically, we are far from its proo
The present paper is a step towards a solution to this p
lem. When we obtain a rigorous proof for the general wa
functions, we will complete the basis of the theory of bun
lengthening.
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