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Proof of the existence and uniqueness of a solution for the Haissinski equation
with a capacitive wake function
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The existence and uniqueness of a solution for the Haissinski equation with a capacitive wake function has
been analytically proved.

DOI: 10.1103/PhysReVvE.64.067501 PACS nuniherd1.75.Ht, 02.30.Rz, 41.75.Fr

The existence and uniqueness of a solution for theHere, we have used the dimensionless paranieter
Haissinski equation is an interesting and important question,
because the solution of this equation is the basis of the theory _ s
of longitudinal instabilities. The stability condition of an &= ao,
electron beam is studied by adding a small perturbation to
this solution and finding the imaginary part of the frequencywhereo, is the nominal rms relative energy spreads the
of modes of the electron beafi—3]. It is known that the velocity of light, e is the electric charge of the electrdnjs
instability thresholds obtained with this method are in goodthe total length of the pipe structure in which the wake field
agreement with the particle-tracking resul&s3]. Nonethe- is generatedk, is the reference energy of the beaxis the
less, the properties of the solution of the Haissinski equatiomumber of electrons in a bunchy is the revolution period of
has not been studied sufficiently and analytically. This isthe beamgis the time displacement between an electron and
because it is such a complicated nonlinear equation. the reference synchronous partickeis the relative energy
This means that there is possibility that this equation hagE — E,)/E, with E being the electron energy, is the syn-
either no solutions or many solutions. Indeed, it has beeghrotron oscillation frequencyy is the momentum compac-
considered that a solution cannot exist for the inductive wakeion factor, ands is the longitudinal coordinate along the
case beyond the threshold. Recently, it has been numericalihg. The second term of Eq2) is the retarding force seen
proved that there is a solution for this cagg5]. There by a particle at¢ due to the longitudinal wake force that is
seems to have always been a solution for arbitrary wak@roduced by all particles in front of ifp(¢) is the particle
functions in previous numerical studies. It is desirable todensity at locatiort.
show the existence and uniqueness of the solution for the In the presence of radiation, two more parameters are nec-
Haissinski equation analytically; however, there is no comessary:b, which is the damping coefficient arﬂ:ba'g,
plete successful analytical approach to prove them, excefhich is the diffusion coefficient representing the amount of
for a simple resistive wake caBg]. Here, we present a proof quantum excitation due to photon emission. The dynamics
of the existence and uniqueness of a solution for a capacitiv@ith radiation may be described by the Fokker-Planck equa-

7 ©)

wake function. tion for the phase-space particle distributiéfe, £,s) [7],
Haissinski formulated a theory for bunch lengthening be-
fore mode-coupling instabilities occiif]. Electrons in an Y ws€ d d WO, e’LN
| i ith their envi b th P —zYtb—eyt -
accelerator interact with their environment because they are 95 ao, 9E Je ToEoo

enclosed in metal§vacuum pipe, the rf cavities, efcThis
effect is represented by the wake functj@h The wake field o 9 2

acting on an electron is determined by the distribution of Xf df’p(§')W(§'—§))£¢+Dﬁ—ezlﬂ- (4)
electrons ahead of it. At the same time, the distribution of ¢
electrons is influenced by the wake field. Hence, to deter-l-

) T . his equation has a static solution implicitly given b
mine the distribution function, one should solve coupled g PIctly g y

nonlinear equations. The single-particle equations of motion €2
are as follows: ¢(6,§)=8X% - ﬁ) p(&), 5
d Ws 2
—_— = 1 «©
as® co. W p(§)=AeXD( - %Jrf d§’V(§’)>, (6)
3
d =9, LN [Cagpewe-o. @ :
s ¢ & ToEsc ), % | V(o= [ depiemie e ™
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Also at Graduate University for Advanced Studies, Shonan Vil- W(E —§é)=—————=—W(&' —§). (8)
lage, Hayama, Miura, Kanagawa 240-0193, Japan. wso ToEg
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Equation(6) is the Haissinski equatiofil]. Here, A is the  whereDg is a constant of integration. By comparing Ef6)

normalization constantf pdé=1. Sincep(£) depends only with Eq. (9), Dy should be logA. Further, since Eq(9)

onp(¢') for é<¢’, and we know means thap must be decreasing for a sufficiently lar§ave
have to choose the branch in Eq(16) for £&—oo.

& If p’ is always negative, there is no physigal which
p(&)~Aexy — 2] £, ©  means thaQ(A) is ill defined. We have to find the region of
& wherep’ can be positive. According to E@15), if there
Eqg. (6) can be integrated from the head of the bunch to theexistsé,, such that
tail for a given value ofA. Let us call the result of such an

integrationp(&;A) and define the “chargeQ as —§o+Cojwd§'P(§')=0 (17)
éo
Q:Q(A):Lwl’(f;A)df- (10 p' can become positive fog<¢&,. According to Eq.(16),
this means that if there existg &), such that
If a valueA exists such tha®(A) =1, it gives the solution of —log p( &) — Cop(£9) +l0g A=0, (18)

the Haissinski equatiof2,3].

We usually find the solution of Eq6) numerically, be- e may choose the- branch in Eq(16) for ¢<&,. Follow-
cause the wake force of vacuum chamber elements is Vefyq this manipulation, we may find a continuous solution.
complicated. _The vyake funcpon can often p_e parametrized Next, we should confirm whether the sign pf really
by a sum of inductive, resistive, and capacitive wake functhanges or not by using the original differential equation. If
tions[1,6,8. Machines with deep cavities are slightly capaci- s positive, the right-hand side of EL5) is monotoni-
tive for a normall bunch, and become more capacitive for(:a"y increasing ag becomes smaller. Thus, the sign of
short bunchegd], i.e., becomes positive foE<¢,. On the other hand, i, is

negative, there occurs a change of the sign only ditg)
w(§)=—Co. (1D <1/|C,|. Otherwise, there is no “well-defineds, even if&,
exists. This condition fop may be rewritten to that fol by

Here, we should notice that the sign@§ may be positive or using Eq.(18). That is, A is arbitrary for a positiveCy,

negative, becausg the sign©f depends on that of the mo- while 0=A<1/(|Cole) for a negative Cy, where e
mentum compaction factor.

. : . =2.7182 ... . From the above discussions, we may also
Here, we analytically prove the existence and uniquenesg 1 -+ there is only oné,, which means thap has only
of a solution of Eq(6) with Egs.(7) and(11). For the pur- one relative maximum Fu'rthep cannot be larger than
pose of our proof, we show that “charg€)(A) is a mono- .

: : : ) . 1/|Co| whenCy is negative.
tonically increasing function oA, i.e., Thus, p must satisfy

Q(0)=0, (12 Jp(s‘,A) dp ()
dQ(A) p(¢..A) py2(—logp—Cop+logA) ”
>0, (13
dA for £é=¢&,,
there exists anAg such that limQ(A)==. (14) p(EA) dp
A=A f == 260(A) +E.
p(és.A) py2(—logp—Cop+logA)

Equations (12), (13), and (14) assure the existence and
uniqueness of the solution, because this causes the existence
and uniqueness oh, which satisfiesQ(A)=1. We mainly \yhere we use Eq16). The parametet., is an artificial point
show Eqs(13) and(14), because Eq12) is trivial. that goes to infinity ag(&..,A) goes to O.

Before our proof, it is necessary to know the relations that Before we proceed further, we should know the condition

the solution of the Haissinski equation must satisfy. Equatiorihalt the char A) is well defined. According to Eq10
(6) with Egs.(7) and (11) is rewritten as and (19, O /f’)e?s( g)iven . g to Eqe10)

for é<é&,, (19

!

P e P(é0.A) 2
p §+C°L AEPle). ) Q(A)zjo de \/—IOQP—CopHOQA’ 20

where the prime denotes differentiation with respect{to \yhere we change the variabdeto p. Here, we should notice
This may be solved as that the integrand is divergent at= p(&,), because (&) is
given by Eq.(18). It is necessary to investigate whether
(16) Q(A) converges or not.
Let us divide the integral region into the following form:

!

p
?Zi V2(—logp—Cop+Dy),
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o- jp<§o>—e+ jp@o) d \/ 2 21
o p(ég)—€ P —logp—Cyp+logA’
where 0<e<p(&,). The first term is obviously convergent. The second term, which we@allis given by
€ 2
Qo= f dx \/ " , (22)
0
—lo (1——”—C —Xx]+IlogA
|
where x=p(&y) —p. Since log(Xx/p;) may be expanded o) 9 1
into a Taylor series for €x/py<1, the following inequality f dp —
may be obtained: 0 IA \[—logp—Cyp+logA
p(éo0) 1 19 1
:f b1 A -
¢ 2 0 S P \J—logp—Cop+logA
=] dx
Q2 fo X x \"1 p
+37_, —+CoX (25
p(€o) p(&)/ n
After we perform partial integration, we obtain
<Fdx
0 dQ (ré0 V2 1 1
+C —= — ,
(&) ) dA~ Jo "P'A (1+Cop)? |“logp— Cop+IogA
(26)

2V2

Ny
—+
p(&0) °

where we use Eq(18). According to Eq.(23), lim._ Q>
<0 for 1p(&y) +Cy>0. If Cq is positive, this condition
does not cause any constraint. EverC{ is negative, this
does not have any constraint becapsel/|C,| for this case,
as we mentioned previously. Sin@g has an upper boun@
must converge.

Let us show Eq(13), which meansQ(A) is monotoni-
cally increasing a®\ becomes larger. By taking the deriva-
tive of both sides of Eq(20),

Ve,

(23

1dQ_ L
v2 dA /—logp(&y)— Cop(&o) +logA

p(£o)
+ d
0

We have to regularize the first term by puttip§éy) — €

d 1 (
Pan J=logp—Cyp+logA’

24)

where we use@lp(&p)/dA=—1/(A[ —1/p(&) —Cop]). Since
Eq. (26) is positive definite,Q(A) is a monotonically in-
creasing function.

Finally, we show that?A,Q(A)>1. With accuracy,Q
—0o as A—o for Co=0 andQ—= as A—1/(|Cyle) for
Cy<0. First, we consider the case th@§ is positive. If we
consider the region wherk is sufficiently large, the integral
region inQ(A) may be divided in the following way:

1 p(éo)
+
0 1

becausep(&,) increases monotonically & becomes larger
from Eq. (18). The first term obviously goes to 0 @&s—x.
For the second term,

2
dp \/— logp—Cyp+IlogA’
(27)

Q(A)=

Jp(éo)d \/ 2
. P NTlogp—Cyp+logA

>fp<§0)d / 2
1 P —Cop+logA’

where we use the fact that lpg-0 whenp>1. The right-
hand side goes tov2ylogA/Cy asA—co. Since the lower
bound ofQ(A) goes to infinity,Q(A) must go to infinity. For

(28)

instead ofp(&p), because this is divergent. By replacing thethe caseCy<0, the variableA has an upper bound of

derivative ofA with that of p, the second term of the right-
hand side is rewritten as

1/(|Cyle), which corresponds tp(&,)=1/Cy|. The charge
Q(1/(|Cyle)) is given by
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1 1/|Cy| 2 solution cannot be obtained explicitly, but by which we can
Q(—)ZJ P\ — analytically prove its solution’s existence and uniqueness.
(ICole) log|Colp-+|Colp—1 29 This case causes us to hope that we will sometime prove the
(29 existence and uniqueness analytically only if we know the

Following the methods used before, we find that E29) is ~ relation that the solution must satisfy. o
infinite. It is of great interest to see whether the Haissinski equa-

We have shown tha@(A) increases monotonically and tion has gt least one solutio.n.for any physical wake_ function.
that Q(A)—= as A—wo for Co=0, Q(A)—x as A Although it seems true empirically, we are far.from its .proof.
—1/(|Cole) for Co<0. Thus, it is proven analytically that The present paper is a s_tep towards a solution to this prob-
the Haissinski equation with a capacitive wake function has &&M- When we obtain a rigorous proof for the general wake
unique solution. Further, it has been proven analytically thafunctions, we will complete the basis of the theory of bunch
the solution has only one relative maximum, and that it alsgngthening.
has an upper boungy<1/C,|, for the Cp<0 case. Al-
though this wake function is a very special one, this work is
meaningful in that we have shown how to prove the exis-
tence and uniqueness of the solution in an analytical manner. The authors thank the members of the KEK Accelerator
We analytically knew that the Haissinski equation had anTheory Group for their help. One of the auth@¥sS.) thanks
unique solution for a resistive case because we obtained thike Japan Society of the Promotion of Science for financial
solution explicitly. Here, we have found one example whosesupport.
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